
Journal of Fluids and Structures (1998) 12, 959—1003
Article. No. fl980179
VIBRO-ACOUSTIC BEHAVIOR OF SUBMERGED
CYLINDRICAL SHELLS: ANALYTICAL FORMULATION

AND NUMERICAL MODEL
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We propose both an analytical formulation and a numerical model to study the hydroelastic or
vibroacoustic behaviour of cylindrical thin shells immersed in an unbounded, inviscid and
heavy fluid. The analytical solution allows us to calculate the dynamic response and the
pressure radiated in the far field by a baffled cylinder. This formulation uses the truncated
modal basis of the dry structure to expand the displacements of the submerged shell. The
analytical model is used as a reference in order to validate a numerical model which couples the
finite element method (FEM) to the boundary element method (BEM). As opposed to the
analytical formulation which is dedicated to baffled circular cylinders only, the numerical
model allows us to treat any axisymmetric shell, such as cylindrical and spherical shells, or more
complex shells of revolution. The structure is idealized by two-node ring finite elements and the
boundary equation is solved using the method of singularities.
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1. INTRODUCTION

FOR MANY YEARS, numerous authors have been interested in the dynamic behaviour of thin
cylindrical shells. We can mention, for example, the very good study realized by Leissa
(1973) or the comparison between Donnell’s theory, Flügge’s theory and Sanders’ theory
made by Dym (1973) and also the last numerical work by Gonialves & Ramos (1997). In the
literature we can also find some papers concerning cylindrical shells with internal liquid, by
Lakis & Paı̈doussis (1971, 1972), Lakis and Neagu (1997) Terhune & Karim-Panahi (1993),
Mistry & Menezes (1995), for example. Concerning the dynamic behaviour of submerged
thin cylindrical shells, most of the publications deal with the analytical approach to the
vibro-acoustic behaviour of shells submerged in an unbounded fluid domain. In general, the
analytical formulation of coupled problems has been made possible for some simple
structures such as plates, beams, spheres and cylinders, and for some boundary conditions.
Sandman (1976) presented an analytical formulation of a finite cylindrical shell closed by
two rigid plates. Stephanishen (1982) and Laulagnet & Guyader (1989, 1990) proposed to
evaluate the pressure field, the vibratory response and the radiated properties of a sub-
merged finite cylinder with infinite rigid baffles connected to the shell. These authors show
that the vibro-acoustic behaviour of a finite baffled shell is equivalent to the behaviour of
a finite shell. Contrary to what happens in the dynamic behaviour of a dry shell, the modes
of the immersed structure are coupled via the heavy fluid medium. Junger & Feit (1972)
0889—9746/98/080959#45 $30.00/0 ( 1998 Academic Press
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proposed a solution for an infinite cylinder. In their model, the intermodal coupling induced
by the outer fluid is neglected. Even in a heavy fluid, this simple solution gives the same
resonant frequencies as the models proposed by Stephanishen and Laulagnet & Guyader.
This analytical point of view is very useful in identifying the radiation properties of classical
shapes. However, the analysis of complex shells requires other solutions (Grosh et al. 1994).

The power of numerical models enables us to study industrial structures for all kinds of
boundary conditions (Morand & Ohayon 1995). Whereas the analytical formulations are
obtained by discretization of the solution of the governing equations, the numerical
solutions are defined as an idealization of the governing equations themselves. Nevertheless,
if this second approach is more powerful than the analytical one, its development is limited
by numerical problems such as by the large CPU time and large storage memory required.
In this paper, we propose two kinds of solutions to study the vibro-acoustic behaviour of
cylindrical shells: one analytical and the other numerical.

Firstly, the analytical formulation concerns a baffled circular thin cylindrical shell. We
use a classical decomposition of the displacements of the immersed shell based on the modal
basis of the finite dry shell. Unlike several other works (Sandman 1976; Stephanishen 1982;
Laulagnet & Guyader 1989, 1990; Lesueur 1988) in which the fluid problem is treated by
boundary integral equations, the pressure in the outer domain is established here using the
governing equations only, Helmholtz’s or Laplace’s, and the boundary conditions on the
shell and at infinity. We show that it is not advisable to neglect the cross-modal coupling in
the calculation of the amplitudes of displacements of the immersed structure.

Next, we propose a numerical model which couples the finite element method to the
boundary element method. With the aim of reducing storage memory problems inherent to
this family of coupled models, we use a two-node ring finite element (Gould 1985; Percy
et al. 1965) to model the shell of revolution. Thus, the thin shell is idealized into a series of
conical frusta joining nodal circles. There are two families of ring finite elements: elements
having a meridian curvature (Gould & Basu 1977; Grafton & Strome 1963) and conical
elements. The numerical model presented in the second part of paper is a conical ring
element. The simplicity of this element and its accuracy as a model of a simple curvature
shell makes it suitable for the study of fluid—structure interactions.

2. ANALYTICAL FORMULATION

We consider a simply supported finite cylindrical shell connected to two infinite rigid
baffles. This shell is assumed to be thin, isotropic and homogeneous and its geometrical
parameters are: length ¸, mean radius R, constant thickness h and its mechanical character-
istics: Young’s modulus E, Poisson’s ratio l, and density o

s
. The shell is immersed in an

unbounded, inviscid, irrotational and compressible or incompressible fluid of density o
f
. If

the fluid is assumed to be compressible, the sound velocity is c.
A cylindrical coordinate system (0, e

r
, eh , ez ) is defined and the limits of the elastic shell

are z"0 and z"¸ (Figure 1). The cylinder is excited by a time harmonic point driving
force F applied to the mid-shell surface at r"R, h"h

f
and z"z

f
:
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Figure 1. Coordinate system and dimensions of the cylindrical shell.
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d( ) denotes the Dirac delta function. f
u
, f

v
, and f

w
are the radial, tangential and longitudinal

components of the driving force in the previous in the previous coordinate system.

2.1. EQUATION OF MOTION OF A DRY FINITE CYLINDER

The elastic shell is considered with respect to the Kirchhoff—Love hypothesis. The matrix
equation of motion for the free vibrations of a dry cylinder can be written as follows:

[K] G
u

v

w H#o
s
h G

u(
v(
w( H"G

0

0

0 H , (3)

where u, v and w are the displacement component of a point P on the mean surface; and [K]
is Donnell’s or Flügge’s operator (see Appendix A). Donnell’s operator is obtained when the
shell is assimilated to its mean surface. In this case, the thickness h is neglected compared to
the mean radius R. Generally, Donnell’s operator is preferred when h/R is small, whereas
Flügge’s operator can be used when h/R is larger. Solving this eighth-order system requires
eight boundary conditions. In the classical case of a simply supported cylinder (Leissa 1973),
the radial and tangential displacements, as well as bending moment M

zz
and normal

force N
z
, are zero at the ends of the shell. Thus, the boundary conditions are

u"v"w
,z
"u

,zz
"0 at z"0 and z"¸. Considering these conditions, the separation of

variables (space and time) is used to solve the equation of free vibrations. Hence, the
displacement field is taken in the two following forms, symmetric or antisymmetric with
respect to h"0:

u"º
0
cos(nh)sin(k

m
z) exp(!jut), u"º

0
sin(nh)sin(k

m
z) exp(!jut),

v"»
0
sin(nh)sin(k

m
z) exp(!jut), or v"»

0
cos(nh)sin(k

m
z) exp(!jut), (4)

w"¼
0
cos(nh)cos(k

m
z) exp(!jut), w"¼

0
sin(nh)cos(k

m
z) exp(!jut),

with k
m
"mn/¸ and n3[0,#R], m3[1,#R]. The parameters m and n are, respectively,

the longitudinal and circumferential half-wavenumbers. In fact, if the displacement field is
symmetric, substitution of the displacement field (4) into the governing equation of motion
(3) finally leads to the following sixth-order equation:

X6#K
1
X4#K

2
X2#K

3
"0, (5)
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where X is the nondimensional circular frequency such that X2"u2/u2
a
, and

u2
a
"E/[(1!l2)o

s
R2] is the ring frequency. Thus,

X2"
(1!l2)o

s
R2

E
u2. (6)

where K
1
, K

2
, and K

3
are defined for both Flügge’s and Donnell’s theories in Appendix A.

The solution of equation (5) allows us to determine the natural frequencies of a dry,
cylindrical, and simply supported thin shell. To each pair (m, n) correspond three double
eigenvalues u2

i
, i"1, 2, 3:

u2
mn1

"u2
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2

3
JK2
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where u is defined as

u"arc cos A
27K

3
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1
!9K
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K
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1
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2
)3 B. (8)

The subscript i denotes the three possible types of deformation: i"1 corresponds to
bending, i"2 to torsion and i"3 to extension—compression. These expressions for the
frequencies are the same, irrespective of the mode of deformation being symmetric or
antisymmetric. Usually, the case corresponding to the circumferential wavenumber n"0
can be treated separately with separation of the axisymmetric problems (symmetric modes)
and the torsional problems (antisymmetric models). Nevertheless, we keep here a general
formulation and, finally, the frequencies u

i
and their associated mode shapes lead to the

determination of the modal basis of the dry structure. We have
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d indicates the antisymmetric (d"0) or symmetric (d"1) character of a shell mode with respect
to h"0. In this expression, there is a summation pertaining to symmetry (d), one to each of the
half-wavenumbers (m and n) and finally one to the type of deformation (i). ad

mni
is the modal

amplitude, g
mni

(t) is the time-dependent function expressed in terms of the modal circular
eigenfrequencies u
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Figure 2. Mode shapes of a simply supported cylinder (Lindholm et al. 1962; Forsberg 1964; Leissa 1973).
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These components are expressed as functions of the associated nondimensional eigenvalue
X

mni
, and the geometrical and mechanical characteristics of the elastic cylindrical shell.

Figure 2 shows the different types of mode shapes that can occur in the study of the simply
supported cylinder. The circumferential shapes are shown in Figure 2(a), the longitudinal
breathing modes are shown in Figure 2(b) and the beam modes in Figure 2(c).

2.2. GOVERNING EQUATIONS OF THE COMPRESSIBLE FLUID

We consider a pressure variation of the fluid about its equilibrium position. The irrotational
motion of an inviscid and compressible fluid can be described by the velocity potential U. In
the unbounded medium, the potential function U must satisfy Helmholtz’s equation,
Sommerfeld’s radiation condition and the boundary condition on the fluid—structure
interface. The appropriate boundary condition at the fluid—solid interface is the continuity
of normal velocities. The elastic shell generates a radial movement of the outer fluid, but the
velocity is zero on the baffles. This implies the following formulation for the fluid behaviour:

(i) the Helmholtz equation:

DU (r, h, z, t)!
1

c2

L2U(r, h, z, t)

Lt2
"0; (11)
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defining the acoustic wavenumber, k
f
"u/c, this leads to

DU#k2
f
U"0;

(ii) Sommerfeld’s condition at infinity:

lim
r?=

rA
LU

Lr
!k

f
UB"0; (12)

(iii) boundary conditions on the vibrating elastic structure, i.e. for z3[0, ¸]:

LU (r, h, z, t)

Lr K
r/R

"uR (h, z, t); (13)

(iv) boundary conditions on the rigid baffles, i.e. for z40 and z5¸

LU(r, h, z, t)

Lr K
r/R

"0. (14)

For the structure under study (elastic shell with infinite rigid baffles) the radial displace-
ment u is not periodic in the axial direction. This lack of periodicity on the wall makes it
impossible to solve the previous governing system in its basic form. It is therefore necessary
to use the spatial Fourier transform of these equations along the z coordinate (Bérot 1997).
With this view, we denote by UI (r, h, m, t) the Fourier transform of U (r, h, z, t), and by
uRI (h, m, t) that of uR (h, z, t). Explicitly,

UI (r, h, m, t)"P
`=

~=

U(r, h, z, t) exp(!jmz) dz (15)

and

uRI (h, m, t)"P
`=

~=

uR (h, z, t) exp(!jmz) dz. (16)

These Fourier transforms have to be solutions of the Fourier transform of the governing
equations of the fluid behaviour. In cylindrical coordinates, the transform of Helmholtz’s
equations becomes

L2UI (r, h, m, t)

Lr2
#

1

r

LUI (r, h, m, t)

Lr
#

1

r2

L2UI (r, h, m, t)

Lh2
#(k2

f
!m2)UI (r, h, m, t)"0. (17)

Its solution is found by using separation of variables in the circumferential and radial
directions,

UI (r, h, m, t)"A(r, m)B (h, m) f (t). (18)

The boundary condition (13) on the vibrating elastic shell leads to f (t)"g (t) with
g(t)"exp(!jut) being the time function of the displacement field. The function B (h, m)
guarantees that the potential function is periodic and continuous,

B (h, m)"
1
+
c/0

=
+
k/0

Bc
k
(m) sinAkh#c

n
2B. (19)

In this case, with Bc
k
(m) being real functions and with B

k
(h, m)"Bc

k
(m) sin(kh#c(n/2)),

UI (r, h, m, t) is explicitly defined by

UI (r, h, m, t)"
1
+
c/0

=
+
k/0

A(r, m)B
k
(h, m) f (t). (20)
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In order to simplify the calculations, we consider a given pair (k, c). Hence, substituting
UI (r, h, m, t) into the Fourier transform of Helmholtz’s equation leads to a Bessel differential
equation

r2A
,rr
#rA

,r
#(Q2mr2!k2)A"0, (21)

where Q2m"k2
f
!m2 is the radial wavenumber. The circumferential wavenumber k repre-

sents the angular contribution. A
,r

is the first derivative of A, and A
,rr

is the second
derivative with respect to the radial component r. The use of Sommerfeld’s condition and
boundary conditions on both the elastic structure and rigid baffles allows us to establish the
expression of the Fourier transform of the fluid velocity potential as a function of the
Fourier transform of the structural radial velocity. The time derivative of uJ (h, m, t) being
expanded in the modal basis of the dry shell (9), UI (r, h, m, t) can now be expressed as

UI (r, h, m, t)"!ju
1
+
c/0

=
+

m/1

1
+
k/0

3
+
l/1

ac
mki

H
k
(Qmr)

QmH@
k
(QmR)

sinAkh#c
n
2BWI

m
(m)g(t), (22)

where WI
m
(m) is the Fourier transform of a longitudinal mode shape, namely

WI
m
(m)"P

L

0

sin(k
m
z) exp (!jmz) dz. (23)

In expression (22), c denotes the symmetry of modes: c3M0, 1N, k is the circumferential
wavenumber (k,n), and i is the type of mode, i3M1, 2, 3N. Moreover, H

k
is the kth order

Hankel function of the first kind and H@
k
is its first derivative with respect to the argument. If

Qm is imaginary, Hankel’s function of imaginary argument is conveniently replaced by
a modified Bessel function of real argument:

K
k
(Qmr)"

n
2

jk`1H
k
( jQmr). (24)

It is of interest to note that if the fluid medium is assumed to be incompressible, the
previous relationship leads to the expression of the Fourier transform of the velocity
potential as a function of the modified Bessel function K

k
(Qmr) and its first derivative.

As for the motion of the shell, the motion of the fluid is assumed to be linear. Thus, the
pressure variation is related to the velocity potential by the linearized Lagrange relation-
ship,

p (r, h, z, t)"!o
f

LU(r, h, z, t)

Lt
. (25)

Once UI (r, h, m, t) is determined, the velocity potential is obtained by using the inverse
Fourier transform. Finally, the hydrodynamic pressure fluctuation is defined as a function
of the radial acceleration of the wall of the vibrating elastic shell,

p(r, h, m, t)"!o
&
u2

1
+
c/0

=
+

m/1

1
+
k/0

3
+
l/1

ac
mki

sinAkh#c
n
2BP

`=

~=

H
k
(Qmr)

QmH@
k
(QmR)

WI
m
(m) exp( jmz) dmg(t).

(26)

2.3. EQUATION OF MOTION OF THE IMMERSED CYLINDRICAL SHELL

The equations of motion for an immersed shell are obtained following the same procedure
as for the equations of the dry shell. The matrix equation of motion for an immersed thin
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walled shell is

[K] G
u

v

w H#o
s
h G

u(
v(
w( H"G

!p D
r/R

0

0 H#G
f
u
f
v

f
w
H. (27)

The radial term p D
r/R

is the hydrodynamic pressure which acts on the shell as a result of the
excitation of the external fluid medium, via the vibration of the shell excited by the driving
force (1). Relation (27) cannot be used in this form, its left part being expressed in terms of
the components of the displacements, while the pressure on the shell walls is defined in
terms of the modal magnitudes ac

mki
. So, in order to solve the cylinder—fluid coupling

problem, we expand the wet shell displacements in the modal basis of the dry structure.
Thus, both sides of equation (27) will be expressed using modal amplitudes. With this idea,
relation (9) is introduced into equation (27). Using the orthogonality properties of the dry
modes, we obtain two independent sets of modal equations of motion. The most difficult
part of the calculations is related to the notation, especially keeping track of the subscripts.
As in the study of the dry cylinder, three mode shapes are associated with each pair of
harmonics (m, n), and the shapes are symmetric or antisymmetric. Therefore, the solution of
the coupled problem with the use of the modal basis requires the introduction of four new
indices (q, l, q, j) associated with the coupled modes: q characterizes the symmetry of the
modes (q,d), l denotes the longitudinal order (l,m), q the circumferential one (q,n) and
j the type of deformation mode.

We express the norm of shell mode eigenvectors as

N
lqj
"

nR¸

e
q
C1#A

»
0lqj

º
0lqj
B
2
#A

¼
0lqj

º
0lqj
B
2

D, (28)

where e
q
is Neumann’s factor: e

q
"1 if q"0, and e

q
"2 if qO0.

Finally, if we normalize the equation of motion with respect to the mass, we obtain
a scalar equation

(u2
lqj
!u2)aq

lqj
"Fq

lqj
#Pq

alqj
. (29)

This expression is established for a given mode (q, l, q, j ); u
lqj

is the natural circular
frequency of the elastic shell. The second term Pq

alqj
on the right-hand side characterizes the

fluid medium influence on the dynamic behaviour of the elastic shell,

Pq
alqj

"u2
o
f
R

o
s
hN

lqj
e
q

=
+

m/1

3
+
i/1
P

`=

~=

H
k
(QmR)

QmH@
q
(QmR)

WI
m
(m)WI *

l
(m)dmaq

mq
, (30)

where WI *
l
(m) is the Fourier transform of the conjugate value of a longitudinal mode shape,

WI *
l
(m)"P

`=

~=

sin(k
l
z) exp ( jmz) dz. (31)

Expression (30) shows that, although modes with different circumferential wave-
numbers q are uncoupled, all modes with identical circumferential order q are
coupled via the fluid. In the same way, the three types of modes associated with a pair (m, q)
are coupled.
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The calculation of the modal component of the generalized force Fq
lqj

results from the
scalar product of the driving force and the displacement of the driving point (R, h

f
, z

f
),

Fq
lqj
"

1

o
s
hN

lqj
Cfu sin(k

l
z
f
) sinAqh

f
#q

n
2B#f

v

»q
0lq

ºq
0lqj

sin(k
l
z
f
) cosAqh

f
#q

n
2B

#f
w

¼q
0lq

ºq
0lqj

cos(k
l
z
f
) sinAqh

f
#q

n
2BD. (32)

As for the displacement field (9), this generalized force can be specially written for h"0:

F q
l0j

"

1

o
s
hN

l0j
Cfu sin(k

l
z
f
)q#f

v

» q
0l0j

ºq
0l0j

sin(k
l
z
f
) (1!q)#f

w

¼ q
0l0j

ºq
0l0j

cos(k
l
z
f
)qD. (33)

Finally, relationship (29), with the associated expressions (30) and (32) or (33), represents
one line of the governing matrix equation:

([diagu2
lqj

]!u2([I]#[M
a
]))MAN"MF

%95
N, (34)

where [I] is the identity matrix, [M
a
] the generalized added mass matrix, [diagu2

lqj
]

the diagonal matrix of the dry squared circular frequencies, and MF
%95

N the generalized force
vector. MAN is the vector of modal magnitudes whose general term is aq

lqj
. The effects of

the ambient fluid on the vibrations of the elastic structure is readily accounted for by the
introduction of a resistance for the compressible fluid, and of an inertia for both the
compressible and incompressible fluids. Thus, [M

a
] is expressed as a function of the circular

eigenfrequency u. The fluid acts not only as an added mass (real part of [M
a
]), but also as

a radiated loss (imaginary part of [M
a
]). For low frequencies, this radiative part may be

neglected without reducing the accuracy of the solution for the dynamic response of the
shell. The previous matrix equation is nonlinear, but [M

a
] is constant if the fluid is assumed

to be incompressible (cPR). In general, the dimension of this matrix set of equations is 3lq.
However, according to equation (30), there is no coupling among circumferential orders, as
well as no symmetries of modes (no sum on both q and q). Finally, the complete dynamic
analysis of the submerged baffled shell leads to solving a pair of uncoupled matrix equations
(34), these expressions having 3l dependent equations.

2.4. PRESSURE RADIATED IN FAR FIELD

The pressure radiated by the cylindrical shell at infinity is given by a relationship coming
from relation (26). Following Junger & Feit (1972), we use the method of stationary phase.

In spherical coordinates (z"o cos u, r"o sinu; see Figure 3) and for oAR, the expres-
sion of the spatial component of the far-field pressure is

p(o, h, u)"!o
f
u2

j exp( jk
f
o)

nok
f
sinu

l
+
c/0

=
+

m/1

=
+
k/0

3
+
i/1

ac
mki

WI @
m
(k

f
cosu)

H@
k
(k

f
R sinu)

sinAkh#c
n
2B

]expA!jk
n
2B, (35)
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where

WI @
m
(k

f
cosu)"G

2mn cosA
k
f
¸ cosu

2 B
¸CA

mn
¸ B

2
!k2

f
cos2 uD

if m is odd

2mn sinA
k
f
¸ cos u

2 B
¸CA

mn
¸ B

2
!k2

f
cos2uD

if m is even.

(36)

Expression (35) is valid for oAR, h3[0, 2n] and u3[0, n]. Because of the term
sin u in the denominator of the pressure expression, a limiting condition must
be used to compute it for u"0 and u"n. Using the expansion of Hankel’s function,
it can be shown that k"0 is the only circumferential order which radiates pressure
in the axial direction. In fact, if kO0 and uP0 or n, then sin uP0 and finally H@

k
PR and

pP0.
As a result, we propose three directivity diagrams: a three-dimensional directivity pattern

drawn in Figure 3, and two two-dimensional representations in Figure 4. The three-
dimensional directivity pattern is obtained by drawing the pressure at point M belonging to
a sphere whose radius is o. The two two-dimensional patterns are deduced from the
three-dimensional one, with h3[0, 2n] and u3[0, 2n].
Figure 3. Spherical coordinate system.



Figure 4. Construction of the two-dimensional directivity patterns. (a) Pressure modulus in the orthogonal
plane of the cylinder axis. (b) Pressure modulus in the plane including the cylinder axis.
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3. NUMERICAL METHOD FOR THE COUPLED PROBLEM

3.1. SHELL MODELLING

The shell is discretized into ring finite elements bounded by two parallel planes which are
perpendicular to the symmetry axis (Figure 5). The intersections of these planes with the
shell middle surface, the nodal circles, have the same purpose as nodal points for two- or
three-dimensional finite elements (Grafton & Strome 1963).

Although the geometry of the shell studied is circular (Figure 1), a two-node conical finite
element is adopted to discretize the structure (Figure 5). Then, the element can be validated
with the previous analytical solution, but also allows us to study any thin cylindrical shell.
A ring finite element is completely defined by the nodal radii r

i
and r

j
, and the longitudinal

coordinates z
i
and z

j
of i and j nodes, respectively.

Using cylindrical coordinates for the analysis of shells of revolution (Figure 6), it is
possible to express all quantities such as the boundary conditions, elastic properties,
displacements, stresses and strains as periodic functions of the circumferential variable h.
A three-dimensional problem can therefore be reduced to a series of one-dimensional
problems. The wall displacements may be expressed in terms of Fourier series,

MºN"G
u

v

w H"G
u
0

v
0

w
0
H# 1

+
d/0

=
+
n/1 G

ºd
n
(s) sinAnh#d

n
2B

»d
n
(s) cosAnh#d

n
2B

¼d
n
(s) sinAnh#d

n
2BH g (t), (37)

where u is the orthomeridian displacement, v the circumferential displacement and w the
meridian displacement. As in the analytical formulation, d denotes the symmetry of the
displacement field (symmetric or antisymmetric) and n denotes the circumferential
wavenumber; the case corresponding to the harmonic n"0 is included in the general form
(37). In order to take the meridian deformations into consideration, we consider a fourth



Figure 5. Conical ring finite element idealization.

Figure 6. Thin conical shell.
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generalized component: the meridian rotation b"u
s
in the plane including the axis of the

shell. With these four components it is possible to describe both the axisymmetric and the
non-axisymmetric behaviour of the shell of revolution (Percy et al. 1965). º (s), » (s) and
¼(s) are the longitudinal terms of displacement u, v and w, respectively, at a given
meridional position s and time t. These meridian polynomial functions for a conical shell are
cubic for the orthomeridian component and linear for the other two:

ºd
n
"a

1
#a

2
s#a

3
s2#a

4
s3,

(38)
»d

n
"a

5
#a

6
s, ¼d

n
"a

7
#a

8
s.

Moreover, for the case of homogeneous boundary conditions, i.e. when the boundary
conditions are independent of the circumferential coordinate h, there is no coupling between



Figure 7. Local and global basis and nodal variables.
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the modes of vibration with different circumferential wavenumbers. The vibration problem
can then be solved for each pair (n, d) independently. This is why it is easier to work at
a given pair of harmonics (n, d). Then, we define the components associated with the pair
(n, d) by

ud
n
"ºd

n
(s) sinAnh#d

n
2B, vd

n
"»d

n
(s) cosAnh#d

n
2B,

wd
n
"¼d

n
(s) sinAnh#d

n
2B, (39)

where ºd
n
, »d

n
, and ¼d

n
are the meridian terms of their respective displacements. They can be

expressed either in local basis (e
t
, eh , es ) attached to [i, j], or in the global basis (e

r
, eh , ez)

attached to the entire structure (Figure 7).
For the chosen two-node finite element, the nodal variables are ºd

n*
, »d

n*
, ¼d

n*
, bd

n*
, where

*"i, j. These variables are defined in the local basis. In the global basis, the nodal
components are ºM d

n*
, »M d

n*
, ¼M d

n*
, bM d

n*
, *"i, j. The change of basis is possible using the rotation

matrix [Q],

G
ºd

n*

»d
n*

¼d
n*

bd
n*
H"[Q] G

ºM d
n*

»M d
n*

¼M d
n*

bM d
n*
H with [Q]"C

cos u 0 sin u 0

0 1 0 0

!sin u 0 cos u 0

0 0 0 1D. (40)

When the meridian magnitudes of the shell displacements (39) are expressed in terms of the
eight nodal variables, we have

Mºd
n
N"[Hd

n
][N

z
]Mad

n
N
e
; (41)

[N
z
] is the array of meridian shape functions,

[N
z
]"C

Nu
1

0 0 Nu
2

Nu
3

0 0 Nu
4

0 Nv
1

0 0 0 Nv
2

0 0

0 0 Nw
1

0 0 0 Nw
2

0 D. (42)
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The meridian, tangential and longitudinal shape functions are those defined for the
polynomial functions (38), as follows:

Nu
1
"

1

4
(1!m)2 (2#m), Nu

2
"

l
ij
8

(1!m2) (1!m),

Nu
3
"

1

4
(1#m)2 (2!m), Nu

4
"

l
ij
8

(!1#m2) (1#m), (43)

Nv
1
"Nw

1
"

1!m
2

, Nv
2
"Nw

2
"

1#m
2

,

with the nondimensional local coordinate m3[!1, 1]. [Hd
n
] is the diagonal array of

circumferential terms,

[Hd
n
]"C

sinAnh#d
n
2B 0 0

0 cos Anh#d
n
2B 0

0 0 sinAnh#d
n
2BD, (44)

where Mad
n
N
e
is the elemental vector of nodal variables associated with a pair (n, d):

Mad
n
NT
e
"Mºd

ni
, »d

ni
, ¼d

ni
, bd

ni
, ºd

nj
, »d

nj
, ¼d

nj
, bd

nj
N. (45)

In order to determine the mass matrix of a finite element e, we assume a velocity field for
e, expressed in terms of generalized nodal velocities. The kinetic energy of the conical
element corresponding to the velocity field can thereby given as a function of the nodal
variables (45) (Zienckiewicz & Taylor 1991):

[M
n
]
e
"P

1

~1

o
s
nhl

ij
e
n

[N
s
]T[N

s
]Ari!

l
ij
2

(1#m) sin uBdm. (46)

The linear strain—displacement relations (see Appendix B) for a conical shell described in
curvilinear coordinates h and s (Figure 6) have been proposed by Percy et al. (1965). When
the values of displacements (37) are substituted in these relations, we arrive at equations
relating the strains in the shell to the nodal variables Mad

n
N
e
. After this, Hooke’s law yields the

stresses in the conical element:

MpN"[D] MeN, (47)

where MpN is the stress vector, [D] is the elasticity matrix, and MeN is the strain vector.
Accordingly, we obtain the deformation energy and hence the elemental stiffness matrix,

[Kd
n
]
e
"P

1

~1

dnhl
ij

e
n

[Pd
n
]T[D][Pd

n
]Ari!

l
ij
2

(1#m) sinuB dm, (48)

where [Pd
n
] is defined in Appendix B. As opposed to the mass matrix which depends only on

the circumferential order n, this stiffness matrix is a function of both the harmonic order (n)
and mode symmetry (d).
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A harmonic point driving force is applied in [r
f
, h

f
, m

f
] on the mean conical surface. The

force is defined as in the analytical formulations (1) and (2), and with m
f
3[!1, 1]:

MFd
n
N
e
"[N

s
(m

f
)]T[Hn(h

f
)] G

f
u
f
v

f
w
H . (49)

It is also possible to define a surface load as an exterior fluid pressure. This pressure p acting
on an element involves elemental generalized nodal forces:

MFd
ns

N
e
"PLX

s

[N
s
]T[Hd

n
]T G

!p

0

0 H dS. (50)

Finally, from expressions (46), (48)—(50), we can determine the matrix equation of motion
for a thin shell of revolution:

[KM d
n
]MaN d

n
N#[MM

n
]MaN$ d

n
N"MFM d

n
N#MFM d

ns
N, (51)

where [KM d
n
], [MM d

n
], MFM d

n
N and MFM d

ns
N are assembled from elemental matrices. The reference

frame changes are operated using the rotation matrix [Q]:

[KM d
n
]
e
"C

[Q]

[0]

[0]

[Q]D
T
[Kd

n
]
eC

[Q]

[0]

[0]

[Q]D. (52)

[MM d
n
]
e
"C

[Q]

[0]

[0]

[Q]D
T
[Md

n
]
eC

[Q]

[0]

[0]

[Q]D. (53)

[FM d
n
]
e
"C

[Q]

[0]

[0]

[Q]D
T
[Fd

n
]
e
, MFM d

ns
N
e
"C

[Q]

[0]

[0]

[Q]D
T
MFd

ns
N
e
. (54, 55)

3.2. FLUID EQUATIONS

3.2.1. General boundary element method

To formulate the coupling between the structure and the external compressible or incom-
pressible fluid, it is necessary to solve the harmonic external Neumann problem for
Helmholtz’s or Laplace’s equation. We assume the ideal compressible medium to have the
same characteristics as in the analytical formulation. Hence, the general equations of the
external fluid are given by Helmholtz’s or Laplace’s equation, the boundary condition on
the shell, and Sommerfeld’s condition at infinity:

(i) Helmholtz or Laplace equation:

DU#k2
f
U"0 or DU"0 over X

f
; (56)

(ii) Sommerfeld’s condition at infinity:

lim
r?=

rA
LU

Lr
!k

f
UB"0; (57)

(iii) Boundary condition at the shell:

LU

Ln
"gradU ·n"v

f
· n. (58)
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This outer problem is solved using the boundary element method (BEM) (Beer & Watson
1992; Brebia & Dominguez 1992; Hall 1994). The BEM reduces a three-dimensional
problem with volume integration to a two-dimensional problem with volume integration to
a two-dimensional surface integral. This means that only a description of the fluid—structure
interface is necessary, not a complete discretization of the surrounding domain. Thus, the
advantage of the BEM formulation is that the solution for unknown parameters will be
sought only at the boundary. Using Green’s third formula, the fluid problem is transformed
into an integral equation

PX
f

(DU(P)G(M, P)!DG(M, P)U(P)) dX
p
"P

S
A
LG(M, P)

Ln
p

U(P)!
LU(P)

Ln
p

G(M, P)BdS
p
,

(59)

where n
p

is the external surface vector of the shell, X
f

the fluid domain and LX
f

the
boundary of X

f
. This surface consists of the surface of the solid S, and that of the boundary

at infinity, LX
f
"SXLX

=
. If G(M, P) satisfies Sommerfeld’s condition), with P belonging to

the elastic shell and M located in the three-dimensional domain, is singularity on the
interface yields

P
S
AU(P)

LG (M, P)

Ln
p

!G(M, P)
LU(P)

Ln
p
BdS

p
"G

!4nU(M)

!2nU(M)

0

if M3X
f
,

if M3S,

if M N X
f
XS.

(60)

In a compressible and unbounded fluid, Green’s function is defined by

G(M, P)"
1

DMP D
exp ( jk

f
DMP D). (61)

k
f

being the acoustic wavenumber given in equation (11). When the fluid is assumed to be
incompressible, Green’s function becomes

G(M, P)"
1

DMP D
. (62)

The potential function U which satisfies Helmholtz’s (or Laplace’s) equation (11) is
established using the method of singularities. This method is based on the fact that
Helmholtz’s or Laplace’s equation is linear. Then, the velocity potential U must be
considered as a linear combination of elementary potentials, each of them satisfying
Helmholtz’s or Laplace’s equation as well as Sommerfeld’s condition. These elementary
potentials can be produced by evenly distributed singularities such as normal dipoles or
sources (Susbielle & Bratu 1981; Delhommeau 1987). Considering a mixed Green distribu-
tion, located at a point P on the fluid—shell interface S, a density of sources and normal
dipoles is defined as

p(P)"
LU

Ln
p

and k (P)"!U(P). (63)

According to the definition of the normal derivative of U, the distribution of sources can be
associated with the normal velocity on the interface S. The distribution of normal dipoles is
equal to the velocity potential on the surface S. Then, the only unknown variable of this
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fluid problem is the distribution of normal dipoles k (P) on the surface. Expression (60) is
written for a point M belonging to the structure surface S. With a mixed Green’s distribu-
tion and discontinuities of potential generated by sources and dipoles across the interface,
we can express the following Fredholm relationship of the second kind:

k(M)

2
!

1

4nP
S

k(P)
LG (M, P)

Ln
P

dS
p
"

1

4n P
S

p (P)G(M, P) dS
p
. (64)

We use a subdomain collocation method to solve the integral equation. The interface S is
discretized by N

f
boundary elements. The surface integrals of equation (64) on this surface

are transformed into a sum of integrals calculated on each boundary element. With this aim,
the Fredholm equation is written for P located at the centroid M

J
of panel J and M located

at the centroid M
I
of panel I:

k
I

2
!

1

4n
Nf

+
J/1

k
J P

SJ

LG
IJ

Ln
J

dS
J
"

1

4n
Nf

+
J/1

p
J P

SI

G
IJ

dS
J
. (65)

According to equations (61) or (62), the Green’s function associated to M
I
and M

J
is defined

by

G
IJ
"G(M

I
, M

J
)"

exp( jk
f
DM

I
M

J
D )

DM
I
M

J
D

or G
IJ
"

1

DM
I
M

J
D
. (66)

Furthermore, the normal derivatives of G
IJ

are

LG
IJ

Ln
J

"grad
MJ

(G(M
I
, M

J
)) · n

J
. (67)

For each element I, there is a relationship like equation (65). Such a relation expresses the
influence of every panel J on panel I. Finally, equation (65) is a typical line of the following
global set of equations which must be solved to study the fluid problem:

[D]MkN"[S]MpN, (68)

where [D] is the array of normal-dipole influence coefficients and [S] is the matrix of source
influence coefficients.

3.2.2. Plane boundary element

In the general case with an interface S of any shape, this interface is discretized by
N

f
quadrilateral or triangular plate panels (Figure 8). Every panel is characterized by the

coordinates of its geometric centre, the components of its unit normal vector and its area S
I

such that S"lim
Nf?=

+Nf

I/1
S
I
; S

I
is supposed to be sufficiently small to support a constant

density of sources and normal dipoles. On S
I
, k(P) and p(P) remain equal to their mean

values k
I
and p

I
, respectively, calculated at the centroid.

The general element of [D] is

D
IJ
"

1

2
d
IJ
!

1

4n P
SJ

LG
IJ

Ln
J

dS
J
, (69)

d
IJ

being the Kronecker delta; [S] is the matrix of source influence coefficients and its
general element has the following form:

S
IJ
"

1

4n P G
IJ

dS
J
. (70)
SJ



Figure 8. Plane boundary panel mesh.

976 F. BËROT AND B. PESEUX
3.2.3. Ring boundary element

In the case of a cylindrical geometry, the interface S is discretized by N
f

conical ring
boundary elements (Figures 9 and 10).

As in the modelling of the shell, the interface geometry allows us to express the surface
quantities into a series of the angular variable h. Every boundary element I is characterized
by its reference meridian line (h"0) of length l

I
and spatially by the coordinates of its

centroid g
I
, the components of its unit normal vector n

I
and its surface S

I
.

Meridian lines are supposed to be sufficiently short to support a constant density of
sources and normal dipoles. On every line, k (P) and p (P) remain equal to their mean values,
k
nl

and p
nl
, respectively. These values are calculated at the centroid of the meridian line

(Figure 10). Thus, the distributions of singularities can be expanded into Fourier series,

p
I
"

=
+
n/0

p
nI

cos(nh
I
), k

I
"

=
+
n/0

k
nI

cos(nh
I
). (71, 72)

Expression (64) is written for h
I
"0 and a given circumferential half-wavenumber n. It

expresses the influence of every ring boundary element on the reference meridian line of the
element I. For each ring boundary element I, there is a relationship like equation (65). This
expression describes the influence of every element J on the element I. Finally, equation (65)
is a typical line of the following global system which must be solved in order to study the
fluid problem:

[D
n
]Mk

n
N"[S

n
]Mp

n
N. (73)

In this case, the general element of [D
n
] is

D
nIJ

"

d
IJ
2
!

1

4n P
SJ

LG
IJ

Ln
J

cos(nh
J
) dS

J
, (74)

d
IJ

being the Kronecker delta; and the general element of the matrix of sources influence
coefficients [S

n
] is

S
nIJ

"

1

4n P
SJ

G
IJ

cos(nh
J
) dS

J
. (75)

Furthermore, p
nJ

and k
nJ

are the general elements of the vectors of meridian densities of
sources and normal dipoles, respectively. The coefficients in equations (74) and (75) are
evaluated by numerical integration.



Figure 9. Ring boundary element mesh.

Figure 10. Geometrical characteristics.
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3.3. COUPLING FEM—BEM

The coupling between the two models is made for each conical ring finite element (discreti-
zation of the shell) and each boundary elements facing it (discretization of the fluid). It is
therefore necessary to define an elemental coupling matrix [FS]

e
which connects the normal

velocities M»d
n
N
e
on boundary elements to the elementary shell nodal velocities as follows:

M»d
n
N
e
"[FS]

e
MaR d

n
N
e
. (76)



Figure 11. Coupling of ring finite element (shell) and plane boundary panels (interface).
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When we consider the plane boundary elements (Figure 11), the structural discretization
and knowledge of the local coordinates (h

I
, m

I
) of the panel centres allow us to define the

elemental coupling matrix in terms of the interpolation functions (41) (Delhommeau et al.
1981; Oudin et al. 1984; Peseux & Quevat 1985):

M»d
n
N
e
"

)

)

)

Mn
I
Nt[Hd

n
(h

I
)] (N

s
(m

I
)]

)

)

)

MaR d
n
N
e
"[FSd

n
]
e
MaR d

n
N
e
, (77)

where [N
s
(m

I
)] and [Hd

n
(h

I
)] are, respectively, the matrix of meridian interpolation func-

tions and the matrix of angular terms of the finite element expressed at the geometric centre
of the current panel; Mn

I
N represents the components of the normal unit vector of the current

panel. The matrix [FSd
n
]
e
depends on both the circumferential order n and symmetry d and

can be written as

[FSd
n
]
e
"CNu

1
(m

I
) 0 0 Nu

2
(m

I
)

F
Nu

3
(m

I
)

F
Nu

3
(m

I
) 0 0 Nu

4
(m

I
)D sinAnh

I
#d

n
2B. (78)

The number of lines in [FSd
n
]
e

is equal to the number of panels associated with the finite
element e. The number of rows is equal to the number of degrees of freedom of e, i.e., eight.

When we consider the ring boundary elements (Figure 12), the elemental coupling matrix
in equation (77) is independent of the circumferential number n:

[FS]
e
"CNu

1
(m

I
) 0 0

F
Nu

2
(m

I
)

F
Nu

3
(m

I
) 0 0 Nu

4
(m

I
)D . (79)



Figure 12. Coupling of ring finite element (shell) and ring boundary elements (interface).
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The corresponding elemental coupling matrices, in the global basis are

[FSd
n
]
e
"[FSd

n
]
eC

[Q]

[0]

[0]

[Q]D or [FS]
e
"[FS]

eC
[Q]

[0]

[0]

[Q]D. (80)

Finally, the coupling between the complete discretization of the shell of revolution and all
the boundary elements requires to assemble all the elemental coupling matrices. The entire
coupling can be written as follows:

M»M d
n
N"[FSd

n
] MaN Q d

n
N or M»M d

n
N"[FS] MaN Q d

n
N. (81)

3.4. GOVERNING EQUATIONS OF THE SUBMERGED SHELL

The previous fluid analysis using the boundary element method has allowed us to express
the density vector of normal dipoles as a function of the distribution of sources on boundary
elements. The distribution of sources can be likened to the normal velocities of the shell and
the distribution of normal dipoles to the velocity potential on each boundary element. Thus,
expression (68) leads us to express the velocity potential at the centre of each boundary
element in terms of the normal velocity at these points:

MUd
n
N"![D]~1[S]M»d

n
N or MUd

n
N"![D

n
]~1[S

n
]M»d

n
N. (82)

Then, the pressure fluctuation in the fluid medium can be evaluated from the
velocity potential using Lagrange’s linearized formula (25). Thus, equations (76) and (82)
give the following relationship between the surface pressure and the shell nodal vector of
velocities:

Mpd
n
N"o

f

L
Lt

([D]~1[S][FSd
n
]MaNQ d

n
N) or Mpd

n
N"o

f

L
Lt

([D]~1[S][FS]MaNQ d
n
N). (83)

The general element of Mpd
n
N is the pressure pd

ln
on a boundary element I.
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Finally, it is possible to write the vector of nodal generalized forces equivalent to the
surface pressures. According to equation (50), and taking plane boundary elements, we have

MFd
ns

N
e
"

Nk

+
I/1
P
SJ

[N
s
(m

I
)]T[Ud

n
(h)]T G

!pd
In

0

0 H dS
J
. (84)

where N
fe

is the number of boundary elements facing the finite element e. This expression
may be given in a matrix form

MFM d
ns

N"!o
f
[FS d

n
]T[A

f
][D]~1[S][FS d

n
]MaN$ d

n
N. (85)

where [A
f
] is the diagonal array of panel surfaces; its dimension is N

f
and has the following

form:

[A
f
]"C

} 0 0

0 S
J

0

0 0 }D. (86)

In the same way, with ring boundary elements, equations (84)— (86) become

MFd
ns

N
e
"

Nft

+
I/1
PS

j

[N
s
(m

I
)]T[Hd

n
(h)]T G

!pd
In

sinAnh#d
n
2B

0

0
HdS

J
. (87)

MFM d
ns

N"!

o
f

e
n

[FS]T[A
f
][D]~1[S][FS]MaN$ d

n
N. (88)

[A
f
]"2n C

} 0 0

0 r
J
l
J

0

0 0 }D. (89)

Using expression (51) of the governing matrix equation of a shell of revolution loaded by
both point and surface loads, the matrix equation of motion for a submerged axisymmetric
shell becomes

[KM d
n
]MaN d

n
N#([MM

n
]#[MM d

an
])MaN$ d

n
N"MFM d

n
N. (90)

The generalized added mass [MM d
an

] is obtained from Equations (85) or (88) and is expressed
in the global basis. As equation (90) is written for a given circumferential wavenumber n, it
must be solved for each n in order to completely study the vibro-acoustic behaviour of the
shell (but only the first few lowest values of n are of importance from an engineering point of
view).

3.5. EXTERNAL PRESSURE FIELD

The displacements of the immersed thin cylindrical shell are given by the equation of
motion, equation (90). The nodal variables can be used to calculate the velocity potential
and the surface pressure on each boundary element using (63) and (68).

Afterwards, the radiated pressure is obtained using the potential expression (60) and
Lagrange’s linearized equation. Like the displacements of the shell, the pressure at point
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M in the compressible medium is determined for each pair of harmonic (n, d) from the third
Green’s formula

pd
n
(M)"!

ju
4n P

S
AUd

n
(P)

LG(M, P)

Ln
P

!G(M, P)
LUd

n
(P)

Ln
P
BdS

p
. (91)

Using the plane—panel discretization, this expression becomes

pd
n
(M)"!
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I
)
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I
BdS

I
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and using the ring boundary element discretization, we get

pd
n
(M)"!
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+
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I
#d

n
2BdS

I
. (93)

For each harmonic, the pressure pd
n
is proportional to the amplitude of the corresponding

displacement of the shell and, finally, the pressure variation generated by the elastic
vibrating shell of revolution is obtained by summation of these harmonic contributions:

p (M)"
1
+
d/0

=
+
n/0

pd
n
(M). (94)

3.6. COMPARISON OF THE FLUID—STRUCTURE MODELS

In a coupled problem, it is first necessary to define exactly both the amplitude and the shape
of the shell. Secondly, it is necessary to make the behavior of the solid shell pass onto the
fluid-structure interface. There are therefore two strategies to solve such a problem (Bérot
1997).

The first approach involves considering the fluid-structure boundary as a rigid surface.
Then, the influence coefficients of singularity are determined at the interface without any
hypothesis on its motion. Only the mutual position of each boundary element is taken into
account. Matrices [D] and [S] are invariant and are calculated before the structural finite
element analysis. Afterwards, it is necessary to define exactly the amplitude and the shape of
the shell facing the interface. Each point of this fluid-structure boundary is given the

acceleration of the solid point facing it through a coupling matrix. This matrix [FS d
n
],

binding the solid shell and the fluid-structure interface, is defined as a function of circum-
ferential harmonics. Such an approach is used in the numerical model which couples ring
finite elements and plane boundary elements.

The second strategy consists in giving only the amplitude of the shell to the fluid-
structure interface. With this point of view, it is not possible to consider the fluid-structure
boundary as a rigid body. It is necessary to define an interface shape similar to the shell
shape and to establish the associated singularity distributions. This procedure is used in the
model which couples ring finite elements with ring boundary elements.

The shape of the fluid-structure interface sometimes allows us to reduce the amount of
data exchanged between the structural analysis and the fluid problem. Hence, only the
amplitude of the structural shape is imparted to the boundary element discretization by the
finite element modeling. The fact that there is little information to transfer between the two
domains in the solution process leads to significantly reduced dimensions of the matrices
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associated with the coupled problem. The second boundary element discretization implies
that [D

n
],[D] and [S

n
],[S] are calculated for each circumferential order. This ap-

proach is only possible for cases in which the shapes of fluid-structure interface are simple
and is therefore very useful for bodies of revolution.

4. NUMERICAL RESULTS

4.1. CYLINDRICAL SHELL

In what follows, all the results presented are obtained for a steel cylinder immersed in an
heavy fluid (water) (Bérot & Peseux 1996, 1997). The mechanical characteristics of the shell
are: Young’s modulus E"2]1011 N/m2, Poisson’s ratio l"0)3, density o

s
"7850 kg/m3;

the geometrical characteristics are: length ¸"1)2 m; mean radius R"0)4 m; thickness
h"0)003 m. The water density is o

f
"1000 kg/m3 and the sound velocity c"1500 m/s. In

order to determine the directivity diagrams, the thin cylinder is excited by a harmonic
driving force located at point z"¸/2 and h"0. According to relation (1), the components
of the unit driving force are F"(1, 0, 0) N. The pressure is calculated at point M belonging
to a sphere whose radius o"150 m (Figure 3).

4.1.1. Analytical formulation

In the analytical formulation of an immersed baffled cylinder in the first part of the paper
(Section 2), there are two steps of calculation. The first one requires the determination of the
modal characteristics, i.e. eigenfrequencies and eigenvectors, of the dry elastic structure.
Figure 1 presents the geometry of the analytical model. The wall velocity is equal to zero on
both infinite baffles, but the elastic thin shell imports a velocity field at the fluid—structure
interface.

Figure 13 presents general variations of the three frequencies obtained with Flügge’s
theory, for each pair of harmonics (m, n). We can see that the eigenfrequencies associated
with deflection [Figure 13(a)] are smaller than the others associated with torsion [Fig-
ure 13(b)] and extension [Figure 13(c)]. The numerical values corresponding to Flügge’s
and Donnell’s theories are given in Table 1.

The second step in the study of the dynamic behaviour of an immersed circular thin shell
concerns the definition of the modal basis. From a theoretical point of view, the matrices in
equation (34) have infinite dimensions. To make this formulation practical, it is necessary to
truncate the longitudinal modal basis. To validate this truncation, one must evaluate the
severity of its effects on the response of the immersed shell. In a light fluid (o

f
@o

s
),

cross-modal coupling can be neglected with small effect on the dynamic behaviour of the
shell, but if the cylinder is submerged in a heavy fluid (o

f
/o

s
+1), the coupling of longitudi-

nal half-wavenumbers cannot be neglected.
Figure 14(a—c) shows the effect of truncation of the longitudinal basis on the modal

amplitude associated with a few circumferential orders q. These calculations are for
a cylindrical shell immersed in water, excited by a time-harmonic point driving force
applied to the mid-shell surface at z"¸/2. This figure shows that a wide expansion of the
longitudinal basis is necessary to have good results, especially for low circumferential
wavenumber. The asymptotic character of modal amplitudes is confirmed by a numerical
results. For each point of the curve, the dimension of the longitudinal basis is l

.!9
, i.e.

l3[1, l
.!9

]. For three circumferential wavenumbers (q"1, q"2 and q"5) and for five
frequencies tested ( f"50, 100, 150, 200 and 300 Hz), Figure 14(a—c) shows that the order of
the longitudinal basis has the same effect; i.e. the convergence is slow as l

.!9
increases.



Figure 13. Eigenfrequencies of a simply supported dry cylinder, n3[0, 25], m3[1, 10], according to Flügge’s
theory; from Leissa (1973).
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TABLE 1

Eigenfrequencies of a simply supported dry cylindrical shell; frequencies in Hz

Theory
i"1
m, n 1, 5 1, 4 1, 6 1, 3 1, 7 2, 6 2, 7 1, 8 2, 5 2, 8

Donnell 142)9 145)7 176)7 210)4 230)1 281)1 290)8 296)3 321)3 334)5
Flügge 139)1 143)4 172)4 209)5 225)6 278)1 286)9 291)7 319)3 330)1

i"2
m, n 1, 0 1, 1 2, 0 1, 2 2, 1 2, 2 3, 0 1, 3 3, 1 2, 3

Donnell 1304)0 2147)0 2609)0 2962)0 3092)0 3815)0 3913)0 4024)0 4182)0 4698)0
Flügge 1304)0 2147)0 2609)0 2962)0 3092)0 3815)0 3913)0 4024)0 4182)0 4698)0

i"3
m, n 1, 0 1, 1 2, 0 2, 1 1, 2 2, 2 3, 0 1, 3 3, 1 2, 3

Donnell 2461)0 3428)0 4466)0 4986)0 5100)0 6255)0 6647)0 6972)0 6987)0 7879)0
Flügge 2461)0 3428)0 4466)0 4986)0 5100)0 6255)0 6647)0 6972)0 6987)0 7879)0

TABLE 2

Eigenfrequencies of a simply supported cylindrical shell immersed in water; frequencies in Hz

Theory
i"1
m, n 1, 4 1, 5 1, 3 1, 6 1, 7 2, 6 1, 2 2, 7 2, 5 1, 8

Donnell 66)4 69)9 88)5 91)8 125)8 148)8 149)7 161)1 161)6 169)1
Flügge 65)4 68)1 88)1 89)6 123)4 147)2 149)7 158)9 160)6 166)5
i"2
m, n 1, 0 1, 1 2, 0 1, 2 2, 1 2, 2 3, 0 1, 3 3, 1 2, 3

Donnell 1304)0 1843)0 2608)0 2834)0 2914)0 3640)0 3913)0 3970)0 4118)0 4698)0
Flügge 1304)0 1843)0 2608)0 2834)0 2914)0 3640)0 3913)0 3970)0 4118)0 4698)0
i"3
m, n 1, 0 1, 1 2, 0 2, 1 1, 2 2, 2 3, 0 1, 3 3, 1 2, 3

Donnell 2212)0 3076)0 4415)0 4898)0 4794)0 6120)0 6619)0 6735)0 6949)0 7879)0
Flügge 2212)0 3076)0 4415)0 4898)0 4794)0 6120)0 6619)0 6735)0 6949)0 7879)0
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For the five frequencies tested and in terms of the circumferential order, we calculate the
response corresponding to a minimal basis l

.!9
"1 and to a larger basis l

.!9
"21.

Figure 15 shows the relative differences between the two results. This figure shows that the
internodal coupling has not been neglected in the calculation of modal amplitudes of
a baffled cylinder immersed in a heavy fluid. Nevertheless, the number of terms in the
longitudinal modal basis has little effect on the frequency response of the submerged shell.
The fluid may be either light or heavy, but a smaller expansion basis will give good results.

The same study and the same comparisons are made for an immersed cylinder.
Figure 16(a—c) shows the three resonant frequencies associated with a pair (m, n) for a shell
immersed in a heavy fluid. The numerical values calculated with our coupled formulation
based on the analytical shell theories from Flügge and Donnell, are presented in Table 2.
We can see that the ambient medium has a weak influence on the frequencies associated
with both torsion (i"2) and extension-compression (i"3) movements. It does not



Figure 14. Influence of the number of terms in the longitudinal modal basis on modal amplitudes.
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influence the pure torsional modes (i"2 and n"0); in an inviscid fluid, the outer fluid
medium has no influence on these components of the displacement field. Tables c1 and c2, in
Appendix C, give all the analytical values associated to Flügge’s theory, concerning both the
dry and immersed cylinder. Thus, calculating the resonant frequencies is numerically easy,
even if the calculation of the radiated pressure involves an important amount of CPU time.



Figure 15. Relative differences on modal amplitude between a minimal and a larger basis.
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The modal method decomposes the vibrations in a series of circumferential modes. It is
therefore necessary to choose the modes which significantly contribute to the amplitude of
the wall. Figure 17 presents the contribution of the first ten circumferential orders in five
driving frequencies.

If the curves in Figure 17 are compared to Figure 14(a—c), it appears that there is no final
conclusion about the choice of the circumferential basis expansion, and for any excitation
frequency it is very difficult to predict the contribution of each circumferential wavenumber
on the final response. Of course, if the excitation frequency coincides with the frequency
associated with the resonant mode, this mode has a large influence.

Like the displacements of the immersed shell, the pressure radiated in the far field is
a function of the longitudinal modal basis. It is not necessary to develop this basis to a large
extent in order to have accurate results (Laulagnet & Guyader 1989, 1990). As opposed to the
calculation of the amplitude of the wall displacements at a given frequency, the directivity
patterns (constructed according to Figures 3 and 4) associated with an uncoupled circum-
ferential wavenumber q. We use only the circumferential orders which have a resonant
frequency below the excitation frequency. In fact, it appears that the modes related to low
circumferential wavenumbers have a large influence on the pressure radiated in the far field.

4.1.2. Numerical model

The coupled numerical model is validated using the previous analytical formulation. Two
comparisons are proposed. The first one concerns the resonant frequencies of the sub-
merged shell and the second is about the pressure radiated in the far field. The thin elastic
shell is modelled using 22 ring finite elements, amounting to 23 nodes (Figure 18).



Figure 16. Eigenfrequencies of a simply supported immersed cylinder, n3[0, 25], m3[1, 10], according to
Flügge’s theory; from Leissa (1973).

VIBRO-ACOUSTIC BEHAVIOR OF CYLINDRICAL SHELLS 987



Figure 17. Contribution to the amplitude displacement of the circumferential modes.

Figure 18. Structural model.
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According to the boundary conditions given in Section 2.1, the nodal variables at the
extremities of the vibrating cylinder are ºd

n
"»d

n
"0. Figures 19 and 20 show the two

modelling representations of the immersed baffled cylinder.
It appears that the infinite rigid baffles have no influence on either the resonant

frequencies or the pressure radiated in the far field. The dynamic behaviour of a finite
cylinder is the same as that of a baffled cylindrical shell. The modelling of the fluid—structure
interface with plane panels requires different numbers of boundary elements depending on
the parameter being predicted. The calculation of the resonant frequencies requires only
three to four plane panels per circumferential wavenumber, while the determination of the
radiated pressure requires eight plane panels per circumferential wavenumber. Below eight
boundary elements, the velocity distribution on the vibrating wall is usually not modelled
properly.

Table 3 gives the frequencies of the dry cylinder calculated with the conical ring finite
element. The values are compared to the previous analytical frequencies corresponding to
the first shape mode i"1. The different results are in good agreement.

In Table 4, we compare the numerical eigenfrequencies obtained with the two coupled
models: ring finite elements coupled with plane panels, and ring finite elements coupled with
ring boundary elements vis-à-vis the analytical results corresponding to Flügge’s theory.
The fluid—structure interface, when we use the planar panel, is idealized with one plane



Figure 19. Numerical coupled model: planar panel/ring finite element coupling.

Figure 20. Numerical coupled model: ring boundary element/ring finite element coupling.

TABLE 3

Dry cylindrical shell; frequencies in Hz

Theory
i"1
m, n 1, 5 1, 4 1, 6 1, 3 1, 7 2, 6 2, 7 1, 8 2, 5 2, 8

Donnell 142)9 145)7 176)7 210)4 230)1 281)1 290)8 296)3 321)3 334)5
Flügge 139)1 143)4 172)4 209)5 225)6 278)1 286)9 291)7 319)3 330)1

Numerical
n 5 4 6 3 7 6 7 8 5 8

Ring* 139)7 144)1 172)6 210)4 226)0 280)9 288)4 291)8 322)9 331)5

*22 conical ring finite elements.
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TABLE 4

Cylindrical shell immersed in water; frequencies in Hz

Theory
i"1
m, n 1, 4 1, 5 1, 3 1, 6 1, 7 2, 6 1, 2 2, 7 2, 5 1, 8

Flügge 65)4 68)1 88)1 89)6 123)4 147)2 149)7 158)9 160)6 166)5

Numerical
n 4 5 3 6 7 2 6 7 5 8

Ring* 65)6 68)4 87)9 90)0 123)8 146)8 148)9 160)4 162)6 167)0
Ring- 66)2 69)1 88)6 90)9 125)4 147)6 150)5 162)2 163)8 169)4

*22 conical ring finite elements coupled with 550 plane panels.
-22 conical ring finite elements coupled with 22 ring boundary elements.

Figure 21. CPU time and storage memory to calculate the first twenty resonant frequencies. (CPU
R%&.

"CPU
time corresponding to the ring/ring model, Memory

R%&.
"Memory storage corresponding to the ring/ring

model).
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panel for each finite element meridian and 25 boundary elements on the circumference.
With the second numerical model, the fluid—structure interface is idealized with one ring
boundary element for each ring finite element. Here also we can notice a very good
agreement between the different values.

Figure 21 presents a comparison of the CPU time and storage memory required to
calculate the first 20 resonant frequencies by both the analytical formulation and the
numerical models. As a reference, we take into account the CPU time and the storage
memory corresponding to the use of the numerical model which couples ring finite elements
and ring boundary elements.

Figures 22—24 present the directivity diagrams associated with different circumferential
orders. The directivity patterns are constructed according to Figures 3 and 4, and with
a coordinate system centred at z"¸/2. As was previously written, n"0 is the only mode
which radiates pressure in the axial direction. Circumferential modes n"3 and n"5, as
well as any other nonzero n, do not produce any pressure in the direction.

Figures 25—27 show the directivity patterns calculated at a given driving frequency by
summation of the elementary diagrams related to each circumferential order. The pressure
is calculated for each circumferential order independently. Afterwards, the pressure radiated



Figure 22. Directivity diagrams associated with n"0 for f"60 Hz.

Figure 23. Directivity diagrams associated with n"3 for f"60 Hz.

Figure 24. Directivity diagrams associated with n"5 for f"60 Hz.

Figure 25. Directivity patterns for f"80 Hz; n3[0, 5].
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Figure 26. Directivity patterns for f"140 Hz; n3[0, 7].

Figure 27. Directivity patterns for f"160 Hz; n3[0, 8].
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at a given frequency is obtained by summation of these elementary pressure fields [equa-
tions (93) and (94)]. The driving frequency considered is f"80 Hz in Figure 25, f"140 Hz
in Figure 26, f"160 Hz in Figure 27, and the circumferential wavenumbers are respectively
n3[0, 5], n3[0, 7] and n3[0, 5].

Figure 28 presents a comparison between CPU time and storage memory required to
obtain the directivity diagram corresponding to Figure 25(b) ( f"80 Hz, h"cst) cal-
culated by both the analytical formulation and the numerical models. As previously, the
reference is the numerical model which couples ring finite elements with ring boundary
elements.

For directivity patterns in the radial direction [part (a) of each figure], the numerical
models and the numerical solution coincide. There are however a few differences in the axial
direction (b). Actually, these differences can be justified by the inaccurate representation of
the ‘‘infinite’’ rigid baffles.

The calculation of the resonant frequencies with the numerical model coupling ring finite
elements to ring boundary elements and the determination of directivity patterns required
less storage memory and CPU time than the numerical model which couples ring finite
elements to plane boundary elements. In the two significant tests, the calculation using the
ring/ring model involved the same cost as the analytical solution, but allows us to model
shells of revolution which are not necessarily circular.

4.2. SPHERICAL SHELL

The numerical model developed here can be used for the study of any shell of revolution.
Hence, the second application presented here concerns a thin spherical shell (Hayeck 1966),
and the model used is the ring-finite-element/ring-boundary-element coupling. The shell of
revolution is idealized into an assembly of 40 ring finite elements. The hydroelastic and



Figure 28. CPU time and storage memory to obtain a 2-D directivity diagram like the one found in Figure 25(b)
( f"80 Hz, h"cst).

Figure 29. Idealization of a thin spherical shell.
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vibroacoustic studies can also use 40 ring boundary elements. The shell is studied without
prescribed displacement.

The mechanical characteristics of the shell are: Young’s modulus E"2)1]1011 N/m2,
Poisson’s ratio l"0)3, density o

s
"7850 kg/m3; its geometrical characteristics are: mean

radius R"2)5 m, thickness h"0)01 m (Figure 29).
Figure 30 presents the first 20 resonant frequencies associated with the first 11 circum-

ferential orders of the dry sphere, except for two eigenfrequencies related to the rigid modes
( f"0 Hz). In the same way, Figure 31 shows the resonant frequencies of the structure
immersed in water.



Figure 30. Eigenfrequencies of a dry spherical shell.

Figure 31. Eigenfrequencies of an immersed spherical shell.
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TABLE 5

Dry spherical shell; frequencies in Hz. Theory: from Peseux (1989)

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

Theory 236)12 279)6 296)7 305)2 310)1 313)4 315)8 317)8

n"0 Ring* 236)1 279)6 296)7 305)2 310)1 313)4 315)8 317)9
Ring- 236)8 280)0 297)0 305)6 310)9 314)6 316)0 319)0

n"1 Ring* 236)1 279)6 296)7 305)2 310)2 313)4 315)9 318)0
Ring- 236)5 280)4 297)8 306)2 311)4 314)7 317)3 320)3

n"2 Ring* 237)3 280)7 297)7 306)1 310)9 314)1 316)6 318)7
Ring- 236)6 280)3 297)8 306)4 311)6 315)0 318)7 319)0

n"3 Ring* — 279)6 296)8 305)3 310)3 313)6 316)1 318)2
Ring- — 280)3 298)0 306)5 311)8 315)4 319)3 319)5

n"4 Ring* — — 296)7 305)2 310)1 313)4 315)8 317)9
Ring- — — 297)6 306)7 312)3 315)9 318)7 322)3

n"5 Ring* — — — 305)2 310)1 313)3 315)8 323)3
Ring- — — — 306)6 312)1 316)1 320)2 320)5

*20 ring curved finite elements; from Peseux (1989).
-40 ring finite elements (present study).

TABLE 6

Sphere immersed in water; frequencies in Hz. Theory: from Peseux (1989)

f
0

f
1

f
2

f
3

f
4

f
5

f
6

f
7

(Inflating)

Theory 94)8 80)7 100)1 113)7 124)6 133)8 141)9 149)2

n"0 Ring* 94)3 80)6 99)4 112)1 122)1 129)7 136)4 141)0
Ring- 91)3 79)6 100)7 111)1 122)9 132)8 142)2 150)5

n"1 Ring* — 80)4 99)1 112)0 121)4 129)2 135)9 141)5
Ring- — 81)1 100)7 114)6 126)0 136)0 145)0 153)2

n"2 Ring* — 81)2 101)0 113)0 122)0 130)0 137)1 142)2
Ring- — 81)2 100)9 115)0 126)3 136)2 145)1 153)2

n"3 Ring- — — 101)0 115)2 126)6 136)4 145)3 153)5

n"4 Ring- — — — 115)1 126)8 136)7 145)7 153)7

n"5 Ring- — — — — 126)8 137)0 146)0 154)0

*18 curved ring finite elements coupled with 360 plane panels; from Peseux (1989).
-40 ring finite coupled with 40 ring boundary elements (present study).
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The numerical eigenfrequencies of the present model are presented in Table 5 for the dry
spherical shell and in Table 6 for the immersed spherical shell and are compared to those
obtained by Peseux (1989). These results concern an analytical formulation based on the
work from Naghdi & Kalnins (1962) and numerical results obtained with the use of curved
ring finite element developed by Wielgosz (1976).

Figures 30 and 31 show that the eigenfrequencies of a spherical shell have a high
multiplicity order (coinciding frequencies). For example, there are three resonant frequen-
cies of the submerged shell around 100 Hz. In the same way, there are four eigenfrequencies
for the dry shell around 279 Hz. This phenomenon is true for each frequency for both a dry



Figure 32. Directivity patterns for driving frequency f"114)5 Hz; n"[0, 5].
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and a submerged sphere, except for the inflating mode (n"0) of the dry sphere ( f"543 Hz,
not computed here) and of the immersed shell ( f+94 Hz).

Figure 32 shows the directivity pattern drawn at a distance o"150 m from the centre of
the sphere. It is obtained in the case of a point force applied at h"0 and u"n/2, and for
the excitation frequency f"114)5 Hz, the wavenumbers taken into account are n3[0, 5].

5. CONCLUSION

In this paper, we have presented two different approaches for the study of the dynamical
behaviour of a thin shell of revolution immersed in an incompressible (hydroelastic
dynamics) or in a compressible fluid (vibro-acoustic dynamics). The first approach is an
analytical formulation concerning a finite baffled cylinder and the second one is a numerical
modelling for any type of shell of revolution.

The analytical formulation of a finite baffled cylinder immersed in a compressible (or
incompressible) unbounded fluid domain is based on the usual method, which consists of
expanding the displacements of the immersed shell in terms of the modal basis of the dry
structure.

In this analytical study, unlike other studies, we do not use a boundary integral
representation of the fluid, but we directly work with the fluid equation of motion.
A parametric study shows that, depending on the information needed (i.e., the vibrating
amplitude of the wall or the radiated pressure in the far field), the intermodal coupling due
to the fluid has to be described with a different accuracy. Then, the dimension of the
truncated modal basis has to be adapted. We also demonstrate that it is actually very
difficult to predict the optimal dimension of the modal basis which will give a good accuracy
on the vibrating amplitude of the wall.

The determination of the radiated pressure in the far field by the shell only requires a few
terms in the development of the displacement in Fourier series. The mode shapes associated
with the weak circumferential and longitudinal orders, have a preponderant influence
compared to the large modes which can be neglected.

The analytical development is used as a reference in order to validate different numerical
models. The numerical models presented in this paper are adapted to the solution of shell of
revolution immersed in a fluid. Indeed, they couple the finite element method which is used
for studying the shell, with the boundary element method which is used for studying the
shell, with the boundary element method which is used for the analysis of the fluid.

One usual conical ring finite element is developed in order to discretize the axisymmetric
shell. It makes it possible to determine the symmetric and antisymmetric motions of any
shell of revolution with a small number of degrees of freedom.
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Two discretizations of the boundary element integral are proposed. The first one, which is
general, consists of modelling of the interface with planar panel elements which support
constant densities of sources and normal dipoles. This model, coupling a conical ring finite
element and a plane panel boundary element, is adapted to the study of an axisymmetric
shell, which, for example, can be connected with a shell of any geometry and immersed in
fluid. With a good accuracy, this model saves CPU time and requires less storage memory
than the general model which couples a general shell finite element with a plane panel
boundary element.

The second discretization, which is an original development is restricted only to the study
of shells of revolution, and consists in using ring boundary elements for the discretization of
the fluids/structure interface. In this case, the singularity distributions are developed in
Fourier series. This model which couples ring finite elements and ring boundary elements is
a substantial progress in the study of the behavior of submerged shells of revolution. Then,
the coupled problem is completely defined by only one meridian line of the axisymmetric
shell. With such a formulation, meshing the entire shell with shell or plate elements becomes
useless.

Furthermore, it is unnecessary to mesh the fluid-structure interface by the classical
collocation method using triangular or quadrilateral plane panels (Bérot & Peseux 1996;
Sayhi et al. 1981). The dimensions of the fluid problem (90) are only equal to the number of
ring boundary elements.

Finally, this new model allows us to significantly reduce the dimensions of the coupled
problem, and as a consequence, the CPU time and the storage memory are drastically
decreased. In the future, this model can be completed by axial or longitudinal stiffeners and
will be easily used for the study of passive or active control processes. For example, the
geometrical characteristics of the shell and the position of the acoustic sources can be
optimized in order to reduce the radiated pressure in the far field.
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APPENDIX A: ANALYTICAL FORMULATION

A.1. FLU® GGE’S AND DONNELL’S OPERATORS

Flügge’s operator is expressed with respect to the displacement field of the mid-surface of the circular
cylindrical shell by
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where g" 1
12

(h/R)2. Donnell’s operator is obtained from Flügge’s by neglecting the thickness h in
comparison to the mean radius R; thus,
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A.2. COEFFICIENTS OF THE SIXTH-ORDER EQUATION (5)

The coefficients of the sixth-order equation, whose roots are the natural pulsations of the dry elastic
shell are solutions, are defined as
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If the governing equations of the dry circular cylindrical thin shell are derived from Flügge’s theory,
these coefficients must be used. In the case of Donnell’s theory, they become
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APPENDIX B: NUMERICAL MODEL

B.1. STRESS-STRAIN RELATIONSHIP

For an isotropic and homogeneous material, the stress-strain relationship used in the numerical
model is defined as

G
p
s

ph
p
sh
q
s

qh
q
sh
H" Eh

1!l2

1 l 0 0 0 0

l 1 0 0 0 0

0 0
1!l

2
0 0 0

0 0 0
h2

12

lh2

12
0

0 0 0
lh2

12

h2

2
0

0 0 0 0 0
h2 (1!l)

24

G
e
s

eh
e
sh
s
s

sh
s
sh
H.

B.2. COEFFICIENTS OF THE MATRIX [Pd
n
]

The coefficients of the matrix of meridian terms [Pd
n
], equation (48), are expressed for the two

symmetries of the displacement field, as follows:
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APPENDIX C: ANALYTICAL VALUES

C.1. ANALYTICAL EIGENFREQUENCIES OF A DRY CYLINDRICAL SHELL (FLU® GGE’S THEORY)

The mechanical characteristics of the cylinder are: Young’s modulus E"2]1011 N/m2, Poisson’s
ratio l"0)3, density o

s
"7850 kg/m3. The geometrical characteristics are: length ¸"1)2 m, mean

radius R"0)4 m, thickness h"0)003 m (Table C1).

C.2. ANALYTICAL EIGENFREQUENCIES OF A CYLINDRICAL SHELL IMMERSED IN WATER (FLU® GGE’S

THEORY)

The mechanical characteristics of the cylinder are: Young’s modulus E"2]1011 N/m2, Poisson’s
ratio l"0)3, density o

s
"7850 kg/m3. The geometrical characteristics are: length ¸"1)2 m, mean

radius R"0)4 m, thickness h"0)003 m. The water density is o
f
"1000 kg/m3 (Table C2).



TABLE C1

Eigenfrequencies (in Hz) of a dry simply supported cylindrical shell by Flügge’s theory

m n i"1 i"2 i"3

1 0 566)4 1304)3 2212)4
1 1 310)6 1843)0 3076)4
1 2 149)7 2834)3 4794)8
1 3 88)1 3969)6 6735)1
1 4 65)4 5157)0 8750)9
1 5 68)1 6367)3 10800)0
1 6 89)6 7589)2 12866)7
1 7 123)4 8817)0 14943)7
1 8 166)5 10050)9 17027)3
1 9 218)2 11286)7 19115)4

m n i"1 i"2 i"3

2 0 724)9 2608)6 4415)5
2 1 601)3 2913)9 4898)1
2 2 411)9 3640)9 6120)2
2 3 281)0 4584)5 7734)6
2 4 202)8 5643)5 9542)0
2 5 160)6 6766)1 11451)0
2 6 147)2 7925)7 13418)2
2 7 158)9 9108)3 15421)5
2 8 190)3 10306)0 17448)4
2 9 236)0 11513)9 19491)6

m n i"1 i"2 i"3

3 0 840)4 3912)9 6619)5
3 1 771)3 4118)1 6948)8
3 2 625)1 4665)5 7854)6
3 3 483)5 5441)0 9166)4
3 4 375)0 6362)3 10734)7
3 5 300)4 7377)3 12462)3
3 6 255)6 8453)4 14291)2
3 7 238)6 9570)7 16187)0
3 8 247)3 10716)3 18128)8
3 9 278)0 11882)2 20103)2

m n i"1 i"2 i"3

4 0 932)4 5217)3 8823)7
4 1 888)2 5370)5 9072)8
4 2 780)7 5800)3 9782)1
4 3 655)1 6443)9 10861)8
4 4 541)3 7242)2 12213)2
4 5 450)7 8150)5 13755)8
4 6 385)8 9137)0 15432)0
4 7 347)0 10179)9 17202)6
4 8 334)3 11263)7 19041)2
4 9 346)5 12378)0 20929)8

m n i"1 i"2 i"3

5 0 1009)2 6521)6 11028)1
5 1 978)5 6643)6 11228)0
5 2 897)9 6994)3 11807)8
5 3 793)2 7537)4 12715)4
5 4 687)2 8232)4 13886)6
5 5 593)6 9043)8 15260)3
5 6 519)2 9943)6 16786)5
5 7 467)0 10910)5 18427)3
5 8 438)9 11928)6 20154)4
5 9 435)4 12986)1 21947)5

TABLE C2

Eigenfrequencies (in Hz) of a simply supported cylindrical shell immersed in water by
Flügge’s theory

m n i"1 i"2 i"3

1 0 1799)4 1304)3 2460)8
1 1 784)7 2147)0 3428)3
1 2 382)7 2961)9 5100)1
1 3 209)5 4024)3 6972)1
1 4 143)4 5183)4 8936)0
1 5 139)1 6381)4 10948)1
1 6 172)4 7597)4 12987)9
1 7 225)6 8823)1 15045)0
1 8 291)7 10054)3 17113)3
1 9 368)3 11289)0 19189)5

m n i"1 i"2 i"3

2 0 1983)1 2608)3 4465)7
2 1 1498)5 3092)4 4985)6
2 2 968)6 3815)0 6254)6
2 3 626)4 4697)7 7878)9
2 4 426)6 5711)8 9675)8
2 5 319)3 6807)8 11569)0
2 6 278)1 7952)1 13520)9
2 7 286)9 9125)7 15510)7
2 8 330)1 10317)8 17526)2
2 9 395)5 11522)2 19560)0
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TABLE C2 (continued)

m n i"1 i"2 i"3

3 0 1998)0 3913)0 6647)2
3 1 1779)4 4181)9 6987)4
3 2 1374)1 4782)5 7916)3
3 3 1015)6 5552)0 9246)3
3 4 753)0 6446)6 10821)5
3 5 577)0 7438)2 12547)8
3 6 470)8 8496)2 14371)5
3 7 422)7 9600)9 16260)6
3 8 423)1 10738)0 18195)5
3 9 460)7 11898)1 20163)5

m n i"1 i"2 i"3

4 0 2004)5 5217)3 8842)6
4 1 1884)1 5397)1 9095)9
4 2 1607)1 5867)6 9816)1
4 3 1302)8 6257)5 10908)1
4 4 1039)1 7230)7 12268)4
4 5 835)1 8215)6 13815)2
4 6 690)7 9188)1 15491)9
4 7 601)3 10218)9 17260)6
4 8 562)0 11293)5 19096)1
4 9 566)4 12400)8 20981)1

m n i"1 i"2 i"3

5 0 2008)7 6521)6 11042)2
5 1 1933)2 6656)7 11244)2
5 2 1740)9 7033)2 11829)6
5 3 1500)2 7595)0 12744)7
5 4 1264)6 8295)5 13922)8
5 5 1062)1 9103)1 15301)5
5 6 903)2 9994)9 16830)5
5 7 790)5 10952)9 18471)9
5 8 723)8 11962)9 20198)4
5 9 700)5 13013)7 21990)0
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